If it's not what You are looking for type in the equation solver your own equation and let us solve it.
83-12x^2=0
a = -12; b = 0; c = +83;
Δ = b2-4ac
Δ = 02-4·(-12)·83
Δ = 3984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3984}=\sqrt{16*249}=\sqrt{16}*\sqrt{249}=4\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{249}}{2*-12}=\frac{0-4\sqrt{249}}{-24} =-\frac{4\sqrt{249}}{-24} =-\frac{\sqrt{249}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{249}}{2*-12}=\frac{0+4\sqrt{249}}{-24} =\frac{4\sqrt{249}}{-24} =\frac{\sqrt{249}}{-6} $
| 5x/10=-10 | | z-4=63 | | h-36=24 | | 87=r+4 | | 7x=92x-6 | | 3/8h=6 | | -9-8(1=6x)-1 | | f+21=51 | | X/2x+7=61 | | 3x-‘+9=2x-10 | | 4(2y+2)-13=2(5y-4)+15 | | -2+3x+5x-6=8 | | (4x+12)=122 | | 12-b/2=7 | | b+20=9 | | 2x-10=7=2-2x=-3 | | 16+p/2=20 | | (-7+4x)+65=90 | | (-7+4x)=155 | | 5x2-20=6x+12 | | 2x-10=7=2-2x=3 | | (5x+15)=75 | | 4x=644x=64 | | 1/4(8x20)=11 | | (2x+18)=(3x+2) | | 6x+20=21x-40 | | (7x+11)=60 | | (2x+28)=80 | | 7(2a-6)=3+3a+2a | | X=15x+60;x=8x+190 | | (9x-4)=(7x+12) | | 5x-4÷3x+7=1/2 |